
Ecole Polytechnique
Fédérale de Lausanne

ME-425: Model Predictive Control

Mini-Project
MPC controller for a Rocket Prototype

Zahra Taghizadeh - 369116
Giada Ehrlich -370768
Andrea Grillo - 371099

Group I

Professor
Colin Jones

Fall 2023

Model Predictive Control Mini-Project Report

Contents

1 Introduction 2

2 Deliverable 2: Linearization and subsystem separation 2
2.1 Description of the system . 2
2.2 Linearization . 2
2.3 Separation of subsystems . 3

3 Deliverable 3: MPC controllers for the subsystems 4
3.1 MPC regulators . 4

3.1.1 Ensuring recursive feasibility . 4
3.1.2 Choice of tuning parameters . 5
3.1.3 Plots 3.1 . 6

3.2 MPC reference tracking controllers . 8
3.2.1 Plots 3.2 . 9

4 Deliverable 4: Linear MPC applied to nonlinear model 10
4.1 Adapting Controller Tuning . 10
4.2 Plots 4.1 . 11

5 Deliverable 5: Offset free tracking 11
5.1 Estimator . 12
5.2 Constant mass . 13
5.3 Dynamic mass . 13

6 Deliverable 6: Nonlinear MPC 14
6.1 Implementation of NMPC . 14

6.1.1 State integration . 15
6.1.2 Tuning of the weights . 15

6.2 Comparing Nonlinear and Linear Controllers . 15
6.3 Plots 6.1 . 16
6.4 Effects of delay . 17

6.4.1 Instability of standard controller . 17
6.4.2 Delay compensation . 17

7 Conclusion 18

EPFL 1 2023-2024

Model Predictive Control Mini-Project Report

1 Introduction

The objective of this project for the Model Predictive Control course is to implement an MPC controller
for a rocket prototype, evaluating different methods and techniques to achieve different goals. The project
has been developed in the Matlab environment, starting from a given physical model of the rocket and a
code template for running the simulations and plotting the results.

First, we simulated the rocket dynamics using arbitrary inputs, to better understand how the system
behaves. Then we linearized the given system and divided it into 4 independent subsystems. We have
developed MPC regulators for each of the subsystems and then improved them to track a reference.
The 4 MPC controllers allowed us to track a complex reference trajectory and evaluate the performance
of the linear controllers applied to a nonlinear system. To ensure the feasibility of the MPC problems
in this case, we softened the constraints. We have then implemented an offset-free tracking controller,
able to track the reference despite a model mismatch, that will consist of a different rocket mass and a
time-varying mass. Finally, we have designed a Nonlinear MPC controller for the rocket, evaluated its
performance and compared it to the linear ones. We have also evaluated the effects of time delay on the
stability of the closed-loop system.

2 Deliverable 2: Linearization and subsystem separation

2.1 Description of the system
The rocket is a complex system which can move in 3D space with 6 degrees of freedom.
Onboard the prototype there are 4 actuators: two motors with propellers to provide the thrust, and two
servo motors to control the deflection of the propellers.
The nonlinear model describing the rocket dynamics has 12 states and 4 inputs, shown below:

x⃗ =



ωx

ωy

ωz

α
β
γ
vx
vy
vz
x
y
z



u⃗ =


δ1
δ2

Pavg

Pdiff



2.2 Linearization
We first found the trim point, which is the steady-state equilibrium point obtained by setting the derivative
of the state to 0. This is done by using the Rocket class trim function, which returns the xs and us
variables, respectively trim state and input.

EPFL 2 2023-2024

Model Predictive Control Mini-Project Report

Below is the obtained state and input:

x⃗s =



ωx

ωy

ωz

α
β
γ
vx
vy
vz
x
y
z



=



0
0
0
0
0
0
0
0
0
0
0
0



u⃗s =


δ1
δ2

Pavg

Pdiff

 =


0
0

56.6667
0



As we can see from the trim point, the rocket is stationary in a vertical position. The inputs are all null,
except for the Pavg value which is non-zero as the rocket needs to stay propelled vertically to oppose
gravity.
Then we used the linearize function to get a linear system, obtained by linearizing the original dynamics
of the rocket around the previously computed steady state point.
The state-space model of the obtained linear system is the following:

⃗̇x =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 9.81 0 0 0 0 0 0 0
0 0 0 −9.81 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0



x⃗+



−55.68 0 0 0
0 −55.68 0 0
0 0 0 −0.104
0 0 0 0
0 0 0 0
0 0 0 0
0 9.81 0 0

−9.81 0 0 0
0 0 0.1731 0
0 0 0 0
0 0 0 0
0 0 0 0



u⃗

As the linearization is done around a vertical trim, and the rocket has a highly non-linear behaviour, to
ensure that the linear controller obtained works, the system will have to be constrained to not deviate
too much from a vertical position.

2.3 Separation of subsystems
The next task consisted of the separation of the linearized system into 4 different subsystems. This is
done using the decomopose method of the rocket class.
In the matrices shown above it is easy to see that each input has influence only on a limited set of states
and that a lot of states are decoupled and do not influence each other.

• Subsystem X - The δ2 input represents the rotation of the propeller, which causes a variation in
the ωy rotational speed and vx linear speed, which consequently causes a variation in the angle β
and of the position along the x axis.

⃗̇xx =


0 0 0 0
1 0 0 0
0 9.81 0 0
0 0 1 0

 ·


ωy

β
vx
x

+


−55.68

0
9.81
0

 · δ2

EPFL 3 2023-2024

Model Predictive Control Mini-Project Report

• Subsystem Y - analogous to the X one.

⃗̇xy =


0 0 0 0
1 0 0 0
0 −9.81 0 0
0 0 1 0

 ·


ωx

α
vy
y

+


−55.68

0
−9.81

0

 · δ1

• Subsystem Z - The Pavg input only influences the speed along the axis z(vz), which in turn causes
a variation of the position along the same axis.

⃗̇xz =

[
0 0
1 0

]
·
[
vz
z

]
+

[
0.1731

0

]
· Pavg

• Subsystem Roll - The roll angle(γ), represents the rocket’s rotation about the z-axis. This angle
is regulated by the input Pdiff, which induces changes in the angular velocity(ωz) and consequently
alters the roll angle.

⃗̇xγ =

[
0 0
1 0

]
·
[
ωz

γ

]
+

[
−0.104

0

]
· Pdiff

One important thing to note is that this complete decoupling of the subsystems is not present in the
original nonlinear system.
For example, the δ inputs generate a variation of the z position, because the thrust generated by the
propellers is not vertical anymore.
This separation is only valid when the states are close to the trim point.

3 Deliverable 3: MPC controllers for the subsystems

In this part, the goal is to create 4 different MPC controllers for the 4 subsystems. We started by designing
simple regulators aimed at tracking a zero state value and then improved them to track a reference value.

3.1 MPC regulators

3.1.1 Ensuring recursive feasibility

The required properties of the regulators are the following:

• Ensuring recursive feasibility and constraint satisfaction

• Regulation: stabilization of the system to the origin

• Performance requirements: settling time for given initial state

To address the computational limitations of implementing an infinite horizon in the MPC problem, we
established a terminal set to guarantee recursive feasibility. This terminal set is based on the invariant
set of an unconstrained LQR(Linear Quadratic Regulator) controller. By ensuring that the final state of
the predicted trajectory falls within this LQR invariant set, we can confidently assert the existence of at
least one feasible control input – specifically, the one provided by the LQR, that can effectively manage
the system.

The algorithm used to compute the terminal set employs the closed-loop matrix A+BK, where K rep-
resents the gain matrix of the LQR controller. This approach effectively renders the system autonomous
by leveraging the closed-loop dynamics. The details of the algorithm are as follows:

EPFL 4 2023-2024

Model Predictive Control Mini-Project Report

Figure 1: Terminal set algorithm

The LQR controller was also used to define the terminal cost, associated with the last iteration of the
finite horizon problem. The terminal cost is defined as:

Vf = xT
NQfxN

Where Qf is the solution of the Discrete Algebraic Riccati Equation (DARE).

The resulting formulation of the MPC problem is the following:

J∗(x) = min
x,u

N−1∑
i=0

(xT
i Qxi + uT

i Rui) + xT
NQfxN

s.t. xi+1 = Axi +Bui

Fxi ≤ f

Mui ≤ m

xN ∈ Xf

Where A,B are the matrices of the model dynamics, and F , f and M , m represent respectively the
state and input constraints. In the table below the enforced constraints are summarized :

Subsystem State Input
x controller |β| ≤ 15◦ |δ2| < 15◦

y controller |α| ≤ 15◦ |δ1| < 15◦

z controller - 50% ≤ Pavg ≤ 80%
γ controller - |Pdiff | ≤ 20%

Table 1: State and input constraints for each subsystem

3.1.2 Choice of tuning parameters

• H - Horizon length: The horizon length has an influence on the region of attraction and the speed
of convergence. A longer horizon offers benefits, but it also comes with an increase in the number
of computational steps. If the horizon is too short, the controller cannot generate a trajectory to
reach the terminal set in the horizon timespan, so the problem becomes unfeasible. The horizon
length has been set to 1s, which at 1/20s sampling time means that a 20-step trajectory will be
generated each time.

EPFL 5 2023-2024

Model Predictive Control Mini-Project Report

• Q, R - Cost matrices: The Q and R cost matrices have been used to generate the cost function for
the MPC problem and to generate the terminal set and cost for the unconstrained LQR controller.
So they influence both the MPC-generated trajectory and in the terminal set and cost. The tuning
has been divided into two steps. The first step consisted of tuning the relative weight of Q, and R
to ensure that the cost of being in a certain state and the cost of applying a certain input are well
balanced. Having a bigger weight on R than on Q means that the controller will be less aggressive,
while the opposite situation leads to a very fast response of the system, but it also may lead to
undesired effects like overshoot and oscillation around the setpoint. In this first part, we have
found no need to do a more fine-grained tuning on the Q matrix, by setting different weights to the
individual state variables.

The chosen parameters are the following:

Subsystem Q R
x controller Q(1,1) = 10, Q(2,2) = 10, Q(3, 3) = 10, Q(4,4) = 10 0.1
y controller Q(1,1) = 10, Q(2,2) = 10, Q(3, 3) = 10, Q(4,4) = 10 0.1
z controller Q(1,1) = 10, Q(2,2) = 10 1
γ controller Q(1,1) = 20, Q(2,2) = 20 1

Table 2: Tuning Parameters

3.1.3 Plots 3.1

We have simulated the 4 controllers and the results are shown below. We can observe that with the design
and tuning, all controllers manage to converge and regulate the state, ensuring recursive feasibility and
constraint satisfaction, as well as the satisfaction of the performance objectives that were required.

• X regulator

projection on ωy and β projection on β and vx projection on vx and x

Figure 2: X regulator terminal set projections

Open loop trajectory Closed loop trajectory

Figure 3: X regulator

EPFL 6 2023-2024

Model Predictive Control Mini-Project Report

• Y regulator

projection on ωx and α projection on α and vy projection on vy and y

Figure 4: Y regulator terminal set projections

Open loop trajectory Closed loop trajectory

Figure 5: Y regulator

• Z regulator

Figure 6: Z regulator terminal set

Open loop trajectory Closed loop trajectory

Figure 7: Z regulator

• Roll regulator

EPFL 7 2023-2024

Model Predictive Control Mini-Project Report

Figure 8: Roll regulator terminal set

Open loop trajectory Closed loop trajectory

Figure 9: Roll regulator

3.2 MPC reference tracking controllers
In this part, we had to improve our controllers not to be just regulators but to be able to track a reference
value.
The first step to achieve this objective is to set up the optimization problem to find the steady-state
point (xs, us) associated with the reference value ref that we want to track.
We have used the following formulation for the optimization problem of the steady-state calculation:

min
us

uT
s Rsus

s.t.

[
I −A −B
C 0

] [
xs

us

]
=

[
0

ref

]
Fxi ≤ f

Mui ≤ m

After having computed the steady-state point to be tracked, the formulation of the MPC problem has
been adapted to the new delta situation:

J∗(x) = min
x,u

N−1∑
i=0

(xi − xs)
TQ(xi − xs) + (ui − us)

TR(ui − us) + (xN − xs)
TQf (xN − xs)

s.t. xi+1 = Axi +Bui

Fxi ≤ f

Mui ≤ m

Note that the terminal set computation and constraint have been dropped.

EPFL 8 2023-2024

Model Predictive Control Mini-Project Report

3.2.1 Plots 3.2

Also in this case the results of the simulations for the 4 controllers satisfy the performance requirements.
There has been no need to adapt the tuning of the cost matrices, as the tracking is good.

• X controller

Open loop trajectory Closed loop trajectory

Figure 10: X controller

• Y controller

Open loop trajectory Closed loop trajectory

Figure 11: Y controller

• Z controller

Open loop trajectory Closed loop trajectory

Figure 12: Z controller

• Roll controller

EPFL 9 2023-2024

Model Predictive Control Mini-Project Report

Open loop trajectory Closed loop trajectory

Figure 13: Roll controller

4 Deliverable 4: Linear MPC applied to nonlinear model

In this report section, we assess the efficacy of four controllers through simulations in a nonlinear system
setting. Starting from the initial state at the origin, our goal is to evaluate each controller’s performance
and its real-world applicability. A critical aspect of our analysis is addressing the model mismatches
encountered when applying linear controllers to a nonlinear framework. To address this, we first closely
analyzed the trajectory plots to identify the specific states leading to such violations and tuned the
parameters to prevent this. Furthermore, in pursuit of a more robust solution to tackle randomized model
mismatches, we used the concept of formulating soft state constraints. By integrating slack variables into
our control framework, we aimed to ensure the feasibility of the problem even under circumstances of
model mismatch.

4.1 Adapting Controller Tuning
The parameters used to build the controllers are presented in the following table. The parameters have
been modified and tuned according to the method described in the previous section, to achieve a good
performance and keep the problem feasible in the context of the given reference trajectory, before changing
to the soft-constrained formulation of the problem. A more fine-grained tuning has been executed on the
Q matrix, by setting different weights to the individual state variables.

Subsystem Q R S s
x controller Q(1,1) = 40, Q(2,2) = 200, Q(3, 3) = 10, Q(4,4) = 100 0.04 100 50
y controller Q(1,1) = 40, Q(2,2) = 200, Q(3, 3) = 10, Q(4,4) = 100 0.04 100 50
z controller Q(1,1) = 20, Q(2,2) = 200 0.01 - -
γ controller Q(1,1) = 50, Q(2,2) = 75 0.05 - -

Table 3: Tuning Parameters

When relaxing the constraints using slack variables, the amount of constraint violation is penalised
by employing linear and quadratic penalties:

ϵTSϵ+ sT ϵ

The s and S parameters are responsible for adjusting the effect of them respectively. Increasing s, results
in increasing peak violations and decreasing duration. On the other hand, an increase in S leads to the
hardening of the soft constraints. Therefore, we opted for substantially larger values of s and S to reduce
the chance of violating constraints over an extended period and to a considerable amount. Considering
the state variables, higher weights were assigned to angular velocities to avoid too aggressive manoeuvres
and minimize angle constraints. Additionally, to better track the trajectory, the positions’ weights also
increased. R parameter was also decreased, which generally made the tracking more accurate.

EPFL 10 2023-2024

Model Predictive Control Mini-Project Report

4.2 Plots 4.1
The following plots illustrate the successful path tracking achieved in our simulations.

Figure 14: Linear MPC in non-linear model, open-loop trajectory

Figure 15: Linear MPC in non-linear model, closed-loop trajectory

5 Deliverable 5: Offset free tracking

In this section, the aim was to formulate a controller that could effectively counteract the influence of
potential deviations in the system model via offset-free tracking. Specifically, our system encounters a

EPFL 11 2023-2024

Model Predictive Control Mini-Project Report

variation in the mass, which results in a constant disruptive force in terms of weight.
Consequently, the controller for the z direction had to be augmented as follows:

xz,k+1 = A · xz +B · uk +B · dk
dk+1 = dk

yk = Cz · xz,k

with a new augmented state:

xaugm =

[
xz,k

dk

]
Furthermore, the existence of a disturbance implies that the states can no longer be computed with the
model itself; instead, they must be measured and recalculated, assuming a constant bias. Consequently,
the introduction of an estimator is necessary to estimate both the system state and the disturbance.

The configuration in Figure 16 was applied to the model to incorporate the capability for offset-free
tracking in the presence of a disturbance.

Figure 16: Offset-free tracking diagram

5.1 Estimator
The estimator for the state and the disturbance takes the following form:

[
xz,k+1 − x̂z,k+1

dk+1 − d̂k+1

]
=

([
A B
0 I

]
+

[
Lx

Ld

] [
C 0

]) [
xz,k − x̂z,k

dk − d̂k

]

ek+1 = (Abar + Lbar · Cbar) · ek

where x̂z,k+1 and d̂k+1 are the state and disturbance estimates, respectively.

At each time step, the state’s measurements obtained through the C matrix are compared with the
predicted state to estimate the disturbance in the model. To ensure the rapid convergence of the predicted
state to the real state, the determination of the Lx and Ld is crucial.
It is imperative to select Lx and Ld in such a way that the error dynamics remain stable and converge to
zero. In our case, they were determined through pole placement. The closer the eigenvalues are to zero,
the more aggressive the system’s behaviour can be, leading to possible overshooting of the disturbance

EPFL 12 2023-2024

Model Predictive Control Mini-Project Report

estimator. In light of this, the poles were chosen with higher values. The specific eigenvalues are the
following:

λ = [0.75, 0.43, 0.87]

After the MPC regulator and the estimator, the target selector was modified. The model was updated to
include the disturbance, and the input constraints were dropped. They were removed due to the potential
infeasibility of the input in case of a very large disturbance estimation. However, it’s worth noting that
the MPC regulator already considers and addresses these constraints.

At last, to enhance tracking performance, the values for the cost matrices Q and R were revised. The
cost associated with the input was raised to minimize fuel consumption. Regarding the state cost, the
expense associated with the z position was significantly increased to highlight the importance of position
tracking. The updated values are as follows:

Q =

[
1 0
0 400

]
R = 0.1

5.2 Constant mass
The additional mass was applied to both the tracking controller and the offset free-tracking controller.
A pure tracking controller cannot detect disturbances and compute the accurate input for achieving the
target state. Consequently, it fails to reach the intended point. In contrast, the offset-free tracking
controller exhibits the ability to respond to disturbances and successfully attain the goal.

No estimator With estimator

Figure 17: Constant mass disturbance

5.3 Dynamic mass
The controller was afterwards tested with a dynamic mass, that gradually decreases as the fuel is con-
sumed. Given that our initial models were based on the assumption of a constant disturbance, the
controllers may face challenges in compensating for the disturbance’s variability over time. To accom-
modate this dynamic disturbance, modifications can be made to the model. Specifically, the disturbance
prediction equation can be updated to incorporate its correlation with the average thrust being used.

The performance of the controller with a dynamic disturbance was then evaluated. The system’s initial
behaviour closely mirrors the one in the , as the mass disturbance can be considered constant. As time
progresses, the fuel consumption alters the mass from its initial value. Although the rocket’s z position is
slightly higher than the target position, it still successfully stays within a close range of the desired state.
After 7 seconds the challenges faced by the rocket are primarily associated with input constraints and
fuel limitations. The rockets’ continuous loss of mass, causes the minimum average thrust to eventually
exceed the steady-state position value. Consequently, the rocket ascends. Furthermore, between 15 to 20
seconds, it begins to descend due to insufficient fuel.

EPFL 13 2023-2024

Model Predictive Control Mini-Project Report

8 seconds 20 seconds

Figure 18: Dynamic mass disturbance

6 Deliverable 6: Nonlinear MPC

In this part, our objective is to develop a Nonlinear Model Predictive Control (NMPC) controller for
the rocket system, utilizing the CASADI framework. The NMPC controller is distinct in considering the
rocket’s full state as its input, rather than breaking it down into separate sub-systems. This approach
allows the controller to operate effectively across the entire state space of the rocket’s nonlinear model.
A key aspect of our design is to address the Euler angle singularity issue. Specifically, the Euler angle
attitude representation in the rocket model exhibits a singularity at β = 90◦. To mitigate this, we
constrain the angle β within safe numerical limits, ensuring |β| ≤ 75◦ to avoid any potential singularity
issues during operation.

6.1 Implementation of NMPC
The formulation of a nonlinear controller is similar to the one used for the linear subsystems:

u∗ = argmin

N−1∑
i=0

l(xi, ui) + Vf (xN)

s.t. xi+1 = f̂(xi, ui)

Fxi ≤ f

Mui ≤ m

Where f̂ is the discrete dynamic of the system, obtained by integrating the continuous one, as described
in the following section.
We do not have complex nonlinear constraints, but just box constraints that can be modelled in the
same way as the linear controllers. As we are not using the linearization around the steady state point
anymore, the constraints limiting the rocket’s state close to the trim point can be dropped.
For the definition of the terminal cost Vf , we have chosen to use the cost given by an unconstrained LQR
controller, as in the previous sections.
We have chosen to use a quadratic cost function, using a Q matrix for the state weights and R for the
input ones. As we have to track a reference, the formulation of the cost function is therefore the following:

V (x) =

N−1∑
i=0

(xi − xref)
TQ(xi − xref) + uT

i Rui + (xN − xref)
TQf (xN − xref)

Where Qf is the solution of the Discrete Algebraic Riccati Equation (DARE) for the LQR controller.

EPFL 14 2023-2024

Model Predictive Control Mini-Project Report

6.1.1 State integration

One of the aspects that poses a challenge in the implementation of the NMPC is the computation of the
evolution of the state over time, which is done by integrating the system dynamics’ continuous function.
During the course, various methods have been presented to achieve this result. The one that we chose to
use is the Runge-Kutta 4 method, illustrated below.
Given the dynamic model of the system:

ẋ = f(x, u)

The state at the next step in time is computed as follows:

K1 = f(x, u)

K2 = f(x+K1
Ts

2
, u)

K3 = f(x+K2
Ts

2
, u)

K4 = f(x+K3Ts, u)

x+ = x+
Ts

6
(K1 + 2K2 + 2 ∗K3 +K4)

6.1.2 Tuning of the weights

The idea behind the tuning of the Q and R weights is the same as the one used for tuning the linear
controller, as described in the first section. The objective is to find the right balance between the state and
input cost while paying more attention to the fine-grained tuning of the individual variables to address
specific issues and improve the overall performance at the end.
At the end, the following weights have been used:

Q =



20 0 0 0 0 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 500 0 0 0 0 0 0
0 0 0 0 0 0 20 0 0 0 0 0
0 0 0 0 0 0 0 20 0 0 0 0
0 0 0 0 0 0 0 0 15 0 0 0
0 0 0 0 0 0 0 0 0 4500 0 0
0 0 0 0 0 0 0 0 0 0 4500 0
0 0 0 0 0 0 0 0 0 0 0 4500



R =


0.01 0 0 0
0 0.01 0 0
0 0 2.5 0
0 0 0 0.01


6.2 Comparing Nonlinear and Linear Controllers
Nonlinear controllers offer advantages in terms of modelling accuracy and versatility, making them suit-
able for complex systems with nonlinear dynamics and wide operating ranges. They can effectively handle
constraints, enhancing safety and stability. However, their design complexity and increased computational
demands can pose challenges. In contrast, linear controllers are simpler to design and implement, partic-
ularly for systems that can be approximated by linear models, resulting in quicker development and lower
implementation costs. Yet, their effectiveness is limited to a narrow range around an equilibrium point,
and they struggle with efficient constraint handling. The choice between nonlinear and linear controllers

EPFL 15 2023-2024

Model Predictive Control Mini-Project Report

hinges on the specific system and control objectives, with each approach having its trade-offs, making it
essential to carefully assess the application’s requirements and constraints.

The comparison between NMPC and LMPC under a substantial roll angle constraint of 50° clearly
demonstrates their respective capabilities. This scenario was chosen to expose the limitations of LMPC
in extreme conditions (when going away from the linearization point) while illustrating the proficiency of
NMPC in managing complex dynamics.

6.3 Plots 6.1

Figure 19: Open loop Nonlinear MPC trajectory

Linear MPC Nonlinear MPC

Figure 20: LMPC and NMPC control performance at 15° roll angle constraint

EPFL 16 2023-2024

Model Predictive Control Mini-Project Report

Linear MPC Nonlinear MPC

Figure 21: LMPC and NMPC control performance at 50° roll angle constraint

6.4 Effects of delay
In this part, we had to evaluate the effect of delay on our controller.
As the nonlinear controller is very resource-intensive in terms of computational cost, it is difficult to have
a real-time controller that can provide input at the sampling rate.
For this reason, when the controller has not computed a new input, the old one is used until there is a
new value available.
We first evaluated the effects of the delay on a standard controller, and then we tried to implement a
countermeasure to this problem, implementing compensation.

6.4.1 Instability of standard controller

Degradation in the performance of the controller can be observed starting from a delay of 3 steps, however
it is more noticeable at 4 steps. Starting from a delay of 5 steps, equivalently 0.125s, the system becomes
unstable and is not controllable anymore.
Below is a plot of the simulation run with a delay of 4 and 5 steps:

4 steps / 0.1s delay 5 steps / 0.125s delay

Figure 22: Controller with delay without compensation

6.4.2 Delay compensation

As a countermeasure to the effects of the delay, a compensator has been implemented.
At the time step k, the next input is not computed for time k + 1, but for time k + Tdelay.
To achieve this, the state dynamics has to be integrated, and for this, an Euler integration has been
implemented, illustrated below:

xk+1 = xk + Tsf(xk, uk)

EPFL 17 2023-2024

Model Predictive Control Mini-Project Report

A matrix mem_u has been defined to save the computed inputs.
At the beginning of the simulation, it is initialized with the steady-state input that makes the rocket
hover:

u0 =
[
0 0 56.667 0

]T
Then, at each time step the mem_u matrix is updated adding the last input computed by the MPC
optimizer.
Below is a plot of the simulation of the partially and fully compensating controllers for a delay of 8 steps
(0.2s), with 6 and 8 steps compensation respectively:

6 steps / 0.15s compensation 8 steps / 0.2s compensation

Figure 23: Controller with delay with compensation

As we can see, the performance is acceptable for the partially compensating controller, however, the
input variables δ1 and δ2 still show a bad oscillation. For the fully compensating controller, this behaviour
is not present anymore and we observe a very good performance.

7 Conclusion

In conclusion, this report presents a comprehensive journey through the development and application
of various MPC strategies for a rocket prototype. The project started with a detailed analysis of the
rocket’s dynamics, followed by system linearization and subdivision into four subsystems. Subsequently,
MPC regulators for each subsystem were meticulously designed, focusing on recursive feasibility and
performance optimization. The study then progressed by implementing linear MPC in a nonlinear model,
where the introduction of soft state constraints played a pivotal role in maintaining feasibility under
model mismatch scenarios. The report also explores offset-free tracking to counteract disturbances,
particularly variations in rocket mass. Finally, a Nonlinear MPC was developed, leveraging the full state
of the rocket model and addressing Euler angle singularity issues. The performance of the NMPC was
thoroughly evaluated and compared to linear controllers, highlighting the advantages and limitations of
each approach. This study not only demonstrates the effectiveness of MPC in managing complex dynamic
systems but also provides valuable insights into the nuances of controller design and tuning for optimal
performance.

EPFL 18 2023-2024

	Introduction
	Deliverable 2: Linearization and subsystem separation
	Description of the system
	Linearization
	Separation of subsystems

	Deliverable 3: MPC controllers for the subsystems
	MPC regulators
	Ensuring recursive feasibility
	Choice of tuning parameters
	Plots 3.1

	MPC reference tracking controllers
	Plots 3.2

	Deliverable 4: Linear MPC applied to nonlinear model
	Adapting Controller Tuning
	Plots 4.1

	Deliverable 5: Offset free tracking
	Estimator
	 Constant mass
	Dynamic mass

	Deliverable 6: Nonlinear MPC
	Implementation of NMPC
	State integration
	Tuning of the weights

	Comparing Nonlinear and Linear Controllers
	Plots 6.1
	Effects of delay
	Instability of standard controller
	Delay compensation

	Conclusion

