
Ecole Polytechnique
Fédérale de Lausanne

Onboard Computer Programming

Semester Project
Author

Andrea Grillo

Professor/Lab
KLUTER Theo / LAP

Supervisor
AMACHER Robin, CROCE David

Fall 2023

SSB Technical document

Contents

1 Abstract 2
1.1 Solutions and importants outcomes . 2
1.2 Workflow . 2
1.3 Key schematic . 3

2 Introduction 4
2.1 Global Context . 4
2.2 Project’s Context . 5

3 System Description 6
3.1 Hardware Architecture . 6
3.2 Software Technical Requirements . 7

4 Framework Architecture Proposal 7
4.1 ROS . 7
4.2 Choice of ROS version . 8

5 ROS system design 9
5.1 ROS components . 9
5.2 ROS interfaces . 9
5.3 ROS graph . 10
5.4 Development of CAN_to_ROS node . 11

5.4.1 First version - Proof of Concept . 11
5.4.2 First version limitations . 12
5.4.3 DBC CAN database files . 13

6 Development Environment 14
6.1 Docker Image . 14
6.2 GIT repositories . 15
6.3 Node templates . 15

7 Issue with selected Onboard Computer 16
7.1 MCP2515 Configuration . 16
7.2 OBC considerations . 17

8 Tests 18

9 Next steps 19
9.1 CAN_to_ROS . 19
9.2 Useful ROS tools . 19
9.3 Onboard Computer choice and Electronics . 19
9.4 Network Architecture . 20

10 Appendix 21
10.1 Abbreviations . 21
10.2 Python Node Template . 22
10.3 C++ Node Template . 23
10.4 NodeJS Node Template . 24

11 References 25

EPFL 1 2023-2024

SSB Technical document

1 Abstract

1.1 Solutions and importants outcomes

List of solutions and importants outcomes
Title Description/assumption Value/Solution
Framework software to be run on the onboard computer ROS
ROS Distro choice of distribution and version ROS2 Humble Hawksbill
Development Environment definition of tools for development Docker Image

Table 1: Important outcomes of the project

1.2 Workflow

Figure 1: Flowchart of the work done during the semester

EPFL 2 2023-2024

SSB Technical document

1.3 Key schematic

Figure 2: ROS graph

Figure 3: Structure of the system

EPFL 3 2023-2024

SSB Technical document

2 Introduction

2.1 Global Context
After two participations at the MEBC (Monaco Energy Boat Challenge) in 2021 and 2022, the Swiss Solar
Boat team is now turning to a new challenge aiming at placing itself halfway between pure optimization
for the purpose of a competition and emerging industrial actors in the field of sustainable boating. To
do so, the team has decided to densify the energy on board and reach higher speeds than the previous
boat. This is achieved by using pressurized hydrogen gas as an energy carrier.
In this state of mind Swiss Solar Boat is developing a new boat by horizon 2026 with the following main
characteristics:

• 3 passengers

• 150 km of autonomy

• 25 kts cruising speed

• 30 kts of top speed

• Electric propulsion powered by a fuel cell and PVs

Simuntaneously, the team is using the current boat, the Dahu, as a test platform for the new boat. As
such, the team is dedicated to hybridizing the Dahu with pressurized hydrogen with the aim of extending
its range significantly.
In this context, this report aims to outline and present the work and results achieved in a semester project
focused on advancing the new boat’s design in the area of the electronics and software architecture.
The project took place during the 3rd semester of the boat’s development, representing progress toward
finalizing the design phase and preparing for production. It followed a 1st semester of pre-design and a
2nd semester dedicated to the design phase of the new boat.

Figure 4: The Dahu, the actual boat.

EPFL 4 2023-2024

SSB Technical document

2.2 Project’s Context
The project is aimed at designing and implementing a framework for the electronics and software ar-
chitecture for the new boat, allowing the development of the control system, the onboard safety, the
communication subsystem with the ground station, and the collection and logging of data.
The project lies in the middle of the hardware and software departments, as the idea is to build a sound
structure for the development of the various subsystems, providing an hardware abstraction layer for the
communication between the components that will be built on top of it.
During previous semesters, the electronic architecture of the boat has beed defined, which includes the
choice of the Onboard Computer (OBC), the choice of the communication bus, the high level connections
between the main components, the development of electronic PCB (Printed Circuit Boards) such as a
shield for the Onboard Computer [1] [2] [3]. In this project, one of the objectives has been to evaluate
and validate the choices made for the electronics architecture, to be sure that software and hardware
components can be integrated in the best possible way.
The most important point about this project is that it defines the framework for the work that will
be done during the next semesters, for this reason special care has to be taken in the design phase. It
is important that the whole system is flexible and future-proof. During the future development many
requirements may need to be changed, the technology used can be improved, so the goal is to have a
flexible base structure that can adapt to these changes without being a limitation. The system has to be
modular, easily configurable and modifiable to account for fast development of the subsystems.

Inputs that were needed Outputs provided through this project
From Briefly what To Briefly what
Elec-hardware High-level hardware architec-

ture
Elec-software /
Energy

Framework and support for the de-
velopment of the Flight Control
Unit, Energy Control Unit, Safety
Control Unit

Elec-software Requirements of the control
system

Elec-software Communication architecture for
remote control and monitoring
through the Ground Station

Table 2: Summary of the Inputs and the Outputs of this project

EPFL 5 2023-2024

SSB Technical document

3 System Description

The boat is a complex system, made by various modules, that have to communicate and cooperate to-
gether to work properly and make the boat functional.
The electronics architecture should provide an effective and reliable structure for these modules to be
controlled in an efficient way.
The architecture has been defined during projects in previous semesters, the main components are listed
in Table 3.

Main components of the system
Component Purpose
Onboard Computer Runs ECU, FCU, SCU, Ground Station communication, datalogging
Cockpit Handles pilot input and supplies boat data to display on cockpit screen
Motor Control Box Actuation Interface with actuation motor controllers
Motor Control Box Propulsion Interface with propulsion motor controllers
IMU Inertial Measurement Unit
Fuel Cell Controller Box Interface with FC controller and safety sensors
Front of the boat Interface with sensors in the front
Low Voltage Battery Interface with low voltage battery BMS
High Voltage Battery Interface with low voltage battery BMS
Energy Management System Interface with energy management components (DC-DC converters, ..)

Table 3: Main components of the system

All those systems will communicate together using a CAN (Controller Area Network) bus. In the work
of Kai Wen Loo [1] in previous semester, the configuration of the bus has been defined, a speed of 500
kbit/s has been chosen, as well as the use of isolated CAN transceivers and the load of the bus has been
estimated to be 33,2% with said configuration.
The purpose of my project is to define the software framework for the Onboard Computer to be able to
communicate with all the subsystems and run the needed programs.
The tasks to be run on the Onboard Computer are listed in Table 4.

Tasks of the Onboard Computer
Task Function
FCU Flight Control Unit
ECU Energy Control Unit
SCU Safety Control Unit
GS Communication Send telemetry data and receive commands
Datalogging Save data in local storage and remotely
LCD Monitor Interface with pilot

Table 4: Tasks of the Onboard Computer

3.1 Hardware Architecture
The Onboard Computer needs the following hardware components connected to it [1]:

• Power Supply

• 4G Module

• CAN-SPI translation chips

• LCD display

EPFL 6 2023-2024

SSB Technical document

Figure 5: Hardware architecture [1] [2]

Two CAN lines are connected to the OBC, one which is used for all the sensors and actuators of the boat,
and the other is used just to communicate with the IMU.

3.2 Software Technical Requirements
The requirements for the OBC framework are resumed in the following table:

Technical Requirements
Provide a hardware abstraction layer for the programs
Ensure reliable CAN communication with other components
Provide remote communication with Ground Station
Run multiple processes in parallel
Provide a way to communicate between the different processes

Table 5: Technical Requirements of the System

4 Framework Architecture Proposal

After having considered the defined hardware architecture and identified the requirements of the system
to be implemented, an architecture for the software part has been proposed.

The main idea proposed is about the use of ROS (Robot Operating System).

4.1 ROS
ROS provides functionality for hardware abstraction, communication between processes, possibility of
having a distributed system over multiple machines, tools for testing, visualization, datalogging and
much more.

ROS provides a way to connect a network of processes (nodes). Nodes can be developed in different
programming languages, can be run on multiple devices, and they can communicate easily with each

EPFL 7 2023-2024

SSB Technical document

other using ROS interfaces.

ROS is made and maintained by a big developer and user community. This results in a great amount of
reusable packages that are simple to integrate, thanks to the architecture of the system. This allows for
a design of a complex system by connecting existing solutions for small problems.

A brief overview of what ROS provides:

• Design a modular system, in which it is easy to replace components with a defined interface,
removing the need of adapting the system to changes.

• Clear definition of the system graph, which helps to define the flow of the data in the whole system.

• Integration of submodules developed in different programming languages / frameworks.

• ROS is a distributed system. It is possible to create nodes over a network of devices, without
worrying about where code is run. It implements Interprocess Communication (IPC) and Remote
Procedure Call (RPC) systems.

• A vast library of existing open-source tools and modules already developed for similar architecture
that can be used as inspiration or be part of the system.

4.2 Choice of ROS version
Considerable attention was paid to the choice of ROS version to be used.
ROS2 has been chosen over ROS1, as the latter is now outdated and used just for legacy reasons.
The goal is to have a stable system with support that lasts as long as possible, so the Humble Hawksbill
distribution has been chosen instead of the last Iron Irwini, because it is a LTS (Long Term Support)
version and its support will end in 2027, which seems a reasonable timeframe for the development of the
system.

Figure 6: Overview of ROS2 distributions

EPFL 8 2023-2024

SSB Technical document

5 ROS system design

ROS is a complex system, it offers a wide range of methods to implement the system, so a preliminary
phase of the development has been about evaluating and selecting ROS features. [4] [5]

5.1 ROS components
• Packages are the main unit for organizing software in ROS. A package may contain ROS runtime

processes (nodes), libraries, datasets, configuration files. Packages are the most atomic build item
and release item in ROS.

• Nodes are processes that perform computation. ROS is designed to be modular at a fine-grained
scale; a control system usually comprises many nodes.

• Topics, a transport system with publish / subscribe semantics for data exchange between nodes.
A node sends out a message by publishing it to a given topic. The topic is a name that is used to
identify the content of the message. A node that is interested in a certain kind of data will subscribe
to the appropriate topic. There may be multiple concurrent publishers and subscribers for a single
topic, and a single node may publish and/or subscribe to multiple topics.

• Bags are a format for saving and playing back ROS message data. Bags are an important mech-
anism for storing data, such as sensor data, that can be difficult to collect but is necessary for
developing and testing algorithms.

5.2 ROS interfaces
The ROS Interfaces are the way data can be exchanged between the components of the system. There
are three primary styles of interfaces [6].
Below a brief description of those:

• Topics

– Should be used for continuous data streams (sensor data, . . .).

– Are for continuous data flow. Data might be published and subscribed at any time independent
of any senders/receivers. Many to many connection. Callbacks receive data once it is available.
The publisher decides when data is sent.

– The definition of a message is done in a .msg file.

• Services

– Should be used for remote procedure calls that terminate quickly. They should never be
used for longer running processes, in particular processes that might be required to preempt
if exceptional situations occur and they should never change or depend on state to avoid
unwanted side effects for other nodes.

– Simple blocking call. Mostly used for comparably fast tasks as requesting specific data. Se-
mantically for processing requests.

– The definition is done in a .srv file, which is composed by: Request, Result.

• Actions

– Should be used for any discrete behavior that runs for a longer time but provides feedback
during execution.

– The most important property of actions is that they can be preempted.

– More complex non-blocking background processing, used for longer tasks. Semantically for
real-world actions.

– The definition is done in a .action file, which is composed by: Goal, Result, Feedback.

EPFL 9 2023-2024

SSB Technical document

5.3 ROS graph
A first version of the ROS graph has been designed.
It is a draft of the whole system, that will be probably modified during the future developments of the
subsystem.
The idea is that most of the data is coming from the CAN bus. It is then translated to ROS topics by
the CAN_to_ROS node, which does the parsing of CAN messages. The data is then elaborated by the
other ROS nodes, such as FCU and the ECU, and then it is read by the LCD node, the GS node, and
also translated back to CAN messages by the same CAN_to_ROS node.
A simple system has been designed, without the use of actions and services. The requirements of the
submodules are not still clear, so the graph has been designed with simplicity in mind. Once the sub-
modules will be conceived, a more complex structure can be designed to adapt to complex requirements.

Below is a list of the nodes that have been included in this first draft:

Nodes of the ROS graph
Task Function
CAN_to_ROS Translation from CAN messages to ROS topics
FCU Flight Control Unit
ECU Energy Control Unit
SCU Safety Control Unit
GS Host Ground Station web server - runs on server
Datalogging Save data in local storage and remotely
LCD GUI Interface with pilot

Table 6: Nodes of the ROS graph

A template for each of this nodes has been written, as well as sample topics for communication between
the nodes. This allows the use of the rqt_graph tool to visualize the resulting ROS graph:

Figure 7: ROS graph

EPFL 10 2023-2024

SSB Technical document

5.4 Development of CAN_to_ROS node
At the heart of the designed system, there is the CAN_to_ROS node. Its role is to provide the hardware
abstraction layer (HAL) from the hardware CANBUS serial to the ROS interfaces and topics.
A CAN message has the following structure:

Figure 8: CAN frame structure and signals[10]

The two fields to consider are the AID (Arbitration ID) and the Data. In a normal frame, the AID has
11 bits, and the DATA can be 0 to 8 bytes long. The length of the data is encoded in the DLC (Data
Length Code).
In a complex system, there are many different messages sent by different subsystems, identified by AID.
As an example, an excerpt of the actual boat message configuration [11] is shown below:

Figure 9: Actual boat CAN message configuration [11]

In this picture it can be seen that any AID correspond to a different type of message, with a different
message structure and encoding. In the 8 bytes of a CAN message there can be different fields with
different meanings for each message type.
Those messages have to be translated to ROS messages to be sent over ROS topics. This is not an easy
task, as the encoding is not unique, so it has to be defined for each type of message. On the other hand,
the system has to be modular, to allow easy addition of new components without having to modify the
CAN_to_ROS module.

5.4.1 First version - Proof of Concept

Before going into the details of the translation of the messages, a first version of the CAN_to_ROS
module has been developed, to be used as a Proof of Concept of the whole system and for testing

EPFL 11 2023-2024

SSB Technical document

purposes.
The code has been written in Python, using the Python-Can [12] library for interfacing with the CAN
bus.
The translation is done in a very simple way, using a Python associative array (dictionary) for storing
the configuration.
The configuration of the module is written in the following way:

Figure 10: First Version CAN messages configuration

The id_to_topic dictictionary associates the AID of each CAN message to a topic name and a message
type. This is used for parsing data coming from CAN and to create the publishers to publish the data.
The topic_to_id array associates the topic names to the CAN AIDs. This is used to create the subscrip-
tions to the topics and to do the encoding for data to be sent over the CANBUS network.

5.4.2 First version limitations

The main limitation of the first version, is that there is a direct connection between a CAN message type
and a topic. A CAN message is translated to a single topic message, and a message is translated to a
defined CAN message.
The problem of this, is that the ROS graph and the topics are at a higher level than the CAN messages,
and this is due to the size limitation of a CAN message.
For this reason, it is important to conceive and design a system that can adapt to these two levels of
abstraction, while maintaining the modularity and the possibility to easily configure the system and adapt
to changes during further development.
Therefore, it is important to have a flexible and modular configuration of the system, which allows the
addition of new components to the CAN network and configurations of its message with ease.
In the existing Dahu system, a single monolithic configuration file contains the whole CAN message
dictionary, which makes it difficult to maintain and adapt.

EPFL 12 2023-2024

SSB Technical document

Figure 11: Excerpt from Dahu CAN dictionary

Moreover, in this first version the parsing of the CAN messages is hardcoded for each type of message,
which is not optimal and can be improved to be based on the configuration file.

5.4.3 DBC CAN database files

The industry standard for maintaining CAN dictionaries is the DBC format [16].
The DBC format allows the definition of dictionaries of different messages in an easy and organised way
[15].
There are many tools readily available which provide the parsing support from the DBC file, which makes
the development of the final version of the CAN_to_ROS module easier and more easily maintainable
and configurable.
The one that seems to be interesting to be easily integrated in the existing codebase and provides all the
necessary features is the Python library Cantools [13].
It provides encoding and decoding of the messages based on a DBC dictionary, and it is very well docu-
mented and vastly used for similar applications.

EPFL 13 2023-2024

SSB Technical document

6 Development Environment

The project is about building a framework for the Onboard Computer. During next semester, all the
submodules will be conceived and developed on top of this framework. For this reason, part of my work
has been to create a development environment to ease the next phases.
I wanted to provide the tools to be able to easily develop, test and deploy the systems.

6.1 Docker Image
The first tool developed is a Docker Image.

Figure 12: Docker Logo

Docker is a virtualization software, which is used for the deployment of applications in lightweight con-
tainers so that applications can work in different environments in isolation [22].
The creation of a Docker Image allows the testing of the ROS system in a defined environment, which is
the same as the one that will be deployed on the Onboard Computer.
This eliminates the need of having the actual hardware to test the rolling development advancements.
The Docker Image has been designed as a development environment, so it contains all the tools needed
for developing the subsystems, starting from ROS building tools, to NodeJS environment for the Ground
Station, and tools for dealing and debugging the CAN connection.
A fair effort has been put in the writing of a good documentation to help others get started with the
development in the Docker Image, small utilities scripts have been written to automate the building and
launch of the container.
A small excerpt of the README documentation can be seen below:

Figure 13: Excerpt of the documentation

EPFL 14 2023-2024

SSB Technical document

The documentation has been written during the development of the Docker Image and tested on my
machine, but it has also been tested by other members of SSB which have started to work on the system,
and it has been improved during the use by them.

6.2 GIT repositories
To provide a functional working environment for the next semester, also big attention has been paid to
the creation of an efficient structure of GIT repositories.
The designed ROS architecture is a complex system, in which many submodules are developed separately
and integrated afterwards, so particular attention has to be paid in maintaining the versioning of all the
codebase.
The idea has been to create a main repository, called SSB ROS2, which serves only as a placeholder to
keep the versions of all the working submodules, which are contained in different GIT repositories.
So the structure of the GIT repositories is the following:

Figure 14: Structure of the repositories created

• Docker development - contains the Dockerfile for the generation of the Docker image and the
scripts to automate the development

• SSB ROS2 - Contains only references to submodules, it is used to maintain a coherent and working
version of the whole system during development, it is used as the src folder of the ROS2 workspace
in the deployment.

• CAN_to_ROS - Contains the node CAN_to_ROS, at the moment written in Python.

• FCU - Contains the template of the FCU node.

• ECU - Contains the template of the ECU node.

• SCU - Contains the template of the SCU node.

• Ground Station - Contains the template of the Ground Station node, in NodeJS.

6.3 Node templates
In the created repositories, ROS packages have been created to contain the nodes that will be developed.
In the packages, a draft of the node has been included, with sample subscriber and publisher definition.
This has been done for various reasons:

• To test that the system is behaving as planned.

• To provide a template for the future development of the code.

• To have the graphical representation of the ROS graph as provided by the rqt_graph ROS tool.

The templates for the nodes can be found in the GIT repositories of the team.
For completeness, a template of a sample generic node in Python, C++ and NodeJS has been provided
in the Appendix of this report.

EPFL 15 2023-2024

SSB Technical document

7 Issue with selected Onboard Computer

The main issue faced during the project, which has taken a lot of time and slowed down the development
of the system, has been a problem with the hardware of the Onboard Computer.
During last semester, in the project of Mathias Arnold [2], the Khadas VIM4 [18] has been chosen as the
OBC, a shield has been developed to be connected to it, and provide CAN connectivity.
As the Khadas VIM4 does not provide a CAN interface, 3 MCP2515 chips have been used to convert
CAN to SPI, which is present on the VIM4.

Figure 15: Khadas VIM4

7.1 MCP2515 Configuration
Linux usually exposes the CAN line as a normal network interface. For this to happen, there is the need
of a kernel module which communicates via SPI to the MCP2515 chip.
In the official Linux kernel, the mcp251x module [17] is included, which can manage up two MCP2515
chips on the same SPI bus.
The module has to be configured, using the Device Tree Overlay [19] configuration.
The Device Tree allows to configure the hardware bindings of the SOC (System on Chip), to define to
which pin of the processor is the MCP2515 chip connected, at which frequency is the chip running, how
is the interrupt needed handled, etc.. This configuration is very specific to the SOC used, and is usually
provided as part of the stock distribution that comes with the device.
In the stock Ubuntu Image provided by Khadas there is no such file, so it has to be coded and compiled.
The configuration is made in .dts files, which are then compiled to .dtb (Device Tree Blob) files by the
use of the dtc command (Device Tree Compiler).
The documentation provided by the vendor for the VIM4 has not been sufficient to gather the information
needed for an easy configuration of the DT.
The only resource found online was a forum page related to a user who manage to get the MCP2515 chip
working with a different version of the SOC, the VIM3 [20].
Multiple tests have been done to try to get to the right configuration, but they were all unsuccessful.
A forum thread has been started to try to seek help from the small community and from Khadas employees
[21].
The advice received from the forum has lead to advancements in the comprehension of the problem, but
not to a final solution.

EPFL 16 2023-2024

SSB Technical document

Figure 16: VIM4 during tests with MCP2515 chip

7.2 OBC considerations
Regardless of the effort needed to solve the problem and make the CAN communication working on
the Khadas VIM4, many considerations have been made on the choice of this Onboard Computer. The
lack of thorough documentation and support by community may create other problems during further
development.
The VIM4 platform is interesting from a hardware point of view, as it has the computational power for
the purpose of the OBC, but it may be difficult to deploy due to the aforementioned problems. For this
reason, other possibilities have been evaluated.
A Raspberry Pi 4 has been bought, as it is known to be working with the MCP2515 chip, it is already
used on the Dahu, and it has been used for testing the whole system.
During the semester, the Raspberry Pi new version 5 has become available, so it has been bought, but it
has arrived only during the last week, so it has not been tested yet.
A good characteristic of the ROS system is that it is portable. As long as ROS can be installed, it is
completely Operating System agnostic. The only component which is dependent on the OS is the CAN
communication, but the CAN is usually exposed as a Linux network interface, which does not change
depending on the hardware platform.

EPFL 17 2023-2024

SSB Technical document

8 Tests

To prove that the idea developed makes sense, that the CAN_to_ROS module first version and the
whole system was working, a test of the architecture has been conceived.
The idea was to test a simplified version of all the components of the system, from the CAN connection
to the communication with the Ground Station.
An Arduino has been used to emulate a sensor of the boat. It has been used to read data from a
potentiometer and send this data over the CAN network using a MCP2515 chip.
A Raspberry Pi 4 has been used as the Onboard Computer. ROS is running on it, with the CAN_to_ROS
module active for the CAN communication using the MCP2515 chip, as will be in the final configuration.
The Raspberry Pi 4 has been connected to a Wireguard VPN to communicate with the Ground Station
server. The server was also running ROS, receiving the topics sent from the Onboard Computer.
A schematic of the conducted tests together with a picture of the test setup can be seen below:

Figure 17: Schematic and Test setup

The tests have lead to promising results. The system is working as expected, and although the perfor-
mances would need further investigation and evaluation, it worked well as a Proof of Concept, and it
seems the development is going in the right direction.

EPFL 18 2023-2024

SSB Technical document

9 Next steps

9.1 CAN_to_ROS
As described in Section 5.4, the actual version of the CAN_to_ROS module is just a Proof of Concept,
and it has many limitations for the future real-life usage.
The specifications of the final module have been clearly defined, and an evaluation of the tools to be used
for the development has been done.
During next semester, a new version of the module will be written which will overcome the limitations
and provide a sound and strong structure for the whole architecture.

9.2 Useful ROS tools
As previously stated, ROS offers a vast range of different modules and tools, which can be useful for the
development. One of the tasks for the next semester will be to evaluate those tools and understand which
ones can be used and for what.
A non-exhaustive list of the tools to be evaluates is the following:

• rosbag and rqt_bag for data logging and playing back

• rqt_plot for live plotting

• rqt_graph for system visualization

• RViz for graphic data visualization

• Gazebo for simulation

• micro-ROS to be run on microcontrollers

• The TF Subsytem

• Foxglove Studio

• Webviz

9.3 Onboard Computer choice and Electronics
Given the problems faced with the configuration of the Onboard Computer, many considerations have
been made on the choice of the model to be used.
At the moment there are three possibilities:

• Khadas VIM4 - powerful hardware platform, lack of good documentation and community, MCP2515
still not working.

• Raspberry Pi 4 - wery well estabilished platform, very good documentation and community,
MCP2515 working and tested, platform already used on the Dahu.

• Raspberry Pi 5 - new platform from Raspberry Pi, still without much resources on the net but
with promising future. More powerful than the 4 version, exposes a PCIe bus which could be
interesting for the 4G module.

During the next semester a final choice has to be made, which could eventually lead to the need of the
redesign of the PCB shield previusly designed for the Khadas VIM4.

EPFL 19 2023-2024

SSB Technical document

Figure 18: From left to right: Khadas VIM4, Raspberry Pi 4, Raspberry Pi 5

9.4 Network Architecture
The Onboard Computer will have the need to communicate with the Ground Station. To use ROS
to communicate, the two devices have to be in the same network in order for the ROS middleware to
establish the communication. During the tests, a Wireguard VPN with a server based in Belgium has
been used to prove that the idea works.
However, this area has to be further explored to understand what will be the optimal configuration for
the boat.

EPFL 20 2023-2024

SSB Technical document

10 Appendix

10.1 Abbreviations
• AID - Arbitration ID

• CAN - Controller Area Network

• DLC - Data Length Code

• ECU - Energy Control Unit

• FC - Fuel Cell

• FCU - Flight Control Unit

• GS - Ground Station

• GUI - Graphics User Interface

• HAL - Hardware Abstraction Layer

• IDL - Interface Description Language

• IMU - Inertial Measurement Unit

• IPC - InterProcess Communication

• LCD - Liquid Crystal Display

• LTS - Long Term Support

• OBC - OnBoard Computer

• ROS - Robot Operating System

• RPC - Remote Procedure Call

• SCU - Safety Control Unit

• SOC - System on Chip

EPFL 21 2023-2024

SSB Technical document

10.2 Python Node Template

import r c lpy
from rc lpy . node import Node
from std_msgs . msg import S t r ing

c l a s s MyExampleNode(Node) :
de f __init__(s e l f) :

super () . __init__(’ node_example ’)
s e l f . publ isher_ = s e l f . c r ea te_pub l i she r (Str ing , ’ pub_topic ’ , 10)
t imer_period = 0 .5 # seconds
s e l f . t imer = s e l f . create_timer (timer_period , s e l f . t imer_cal lback)
s e l f . i = 0

s e l f . s ub s c r i p t i o n = s e l f . c r ea t e_subsc r i p t i on (
Str ing ,
’ sub_topic ’ ,
s e l f . l i s t en e r_ca l l b a ck ,
10)

s e l f . s ub s c r i p t i o n # prevent unused va r i ab l e warning

de f l i s t e n e r_ca l l b a c k (s e l f , msg) :
s e l f . get_logger () . i n f o (’ I heard : "%s " ’ % msg . data)

de f t imer_cal lback (s e l f) :
msg = St r ing ()
msg . data = ’ He l lo World : %d ’ % s e l f . i
s e l f . publ isher_ . pub l i sh (msg)
s e l f . get_logger () . i n f o (’ Pub l i sh ing : "%s " ’ % msg . data)
s e l f . i += 1

de f main (args=None) :
r c lpy . i n i t (args=args)

my_example_node = MyExampleNode ()

r c lpy . sp in (my_example_node)

my_example_node . destroy_node ()
r c lpy . shutdown ()

i f __name__ == ’__main__’ :
main ()

EPFL 22 2023-2024

SSB Technical document

10.3 C++ Node Template

#inc lude <chrono>
#inc lude <func t i ona l >
#inc lude <memory>
#inc lude <s t r i ng >

#inc lude " r c l cpp / rc l cpp . hpp"
#inc lude "std_msgs/msg/ s t r i n g . hpp"

us ing namespace std : : c h r ono_ l i t e r a l s ;

c l a s s ExampleNode : pub l i c r c l cpp : : Node
{

pub l i c :
ExampleNode ()

: Node (" example_node ") , count_ (0)
{

publ i sher_ = th i s −>create_publ i sher<std_msgs : : msg : : Str ing >("pub_topic " , 1 0) ;
timer_ = th i s −>create_wall_timer (
500ms , std : : bind(&ExampleNode : : t imer_cal lback , t h i s)) ;

subscr ipt ion_ = th i s −>create_subsc r ip t i on <std_msgs : : msg : : Str ing >(
" sub_topic " , 10 , std : : bind(&ExampleNode : : top ic_ca l lback , th i s , _1)) ;

}
}

p r i va t e :
void t imer_cal lback ()
{

auto message = std_msgs : : msg : : S t r ing () ;
message . data = "Hel lo , world ! " + std : : to_str ing (count_++);
RCLCPP_INFO(th i s −>get_logger () , " Pub l i sh ing : ’%s ’ " , message . data . c_str ()) ;
publisher_−>pub l i sh (message) ;

}
void top i c_ca l lback (const std_msgs : : msg : : S t r ing : : SharedPtr msg) const
{

RCLCPP_INFO(th i s −>get_logger () , " I heard : ’%s ’ " , msg−>data . c_str ()) ;
}

r c l cpp : : Subscr ipt ion<std_msgs : : msg : : Str ing >: : SharedPtr subscr ipt ion_ ;
r c l cpp : : TimerBase : : SharedPtr timer_ ;
r c l cpp : : Publ i sher<std_msgs : : msg : : Str ing >: : SharedPtr publ i sher_ ;
s i ze_t count_ ;

} ;

i n t main (i n t argc , char ∗ argv [])
{

r c l cpp : : i n i t (argc , argv) ;
r c l cpp : : sp in (std : : make_shared<ExampleNode >()) ;
r c l cpp : : shutdown () ;
r e turn 0 ;

}

EPFL 23 2023-2024

SSB Technical document

10.4 NodeJS Node Template

const r c l n od e j s = r equ i r e (’ r c l node j s ’) ;

r c l n od e j s . i n i t () . then (() => {
const node = r c l n od e j s . createNode (’ example_node ’) ;

node . c r e a t eSub s c r i p t i on (’ std_msgs/msg/ Str ing ’ , ’ sub_topic ’ , (msg) => {
conso l e . l og (‘ Received message : ${ typeo f msg} ‘ , msg) ;
}) ;

const pub l i s h e r = node . c r e a t ePub l i s h e r (’ std_msgs/msg/ Str ing ’ , ’ pub_topic ’) ;

l e t counter = 0 ;
s e t I n t e r v a l (() => {
conso l e . l og (‘ Pub l i sh ing message : He l lo ROS ${ counter } ‘) ;
pub l i s h e r . pub l i sh (‘ He l l o ROS ${ counter ++} ‘);
} , 1000) ;

r c l n od e j s . sp in (node) ;
}) ;

EPFL 24 2023-2024

SSB Technical document

11 References

[1] Integration of Low Power Electronics: CAN bus and component selection - Kai Wen LOO

[2] Integration of Low Power Electronics: Design Microcontroller and Main Electronics Box - Mathias
ARNOLD

[3] Preliminary Design of the REF Electronic systems - Baptiste RANGLARET

[4] ROS2 Documentation - Introduction http://wiki.ros.org/ROS/Introduction

[5] ROS2 Documentation - Concepts http://wiki.ros.org/ROS/Concepts

[6] ROS2 Documentation - Topics - Services - Actions https://docs.ros.org/en/humble/
How-To-Guides/Topics-Services-Actions.html

[7] ROS2 Documentation - Package creation https://docs.ros.org/en/humble/How-To-Guides/
Developing-a-ROS-2-Package.html

[8] ROS2 Introduction https://www.toptal.com/robotics/introduction-to-robot-operating-system

[9] Offenburg University - Black Forest Formula Team - similar application https://github.com/
Black-Forest-Formula-Team/bfft_can_bus_msgs_to_ros_topic

[10] Wikipedia - CANBUS https://en.wikipedia.org/wiki/CAN_bus

[11] Dahu CAN messages database https://docs.google.com/spreadsheets/d/
1QLoGUTFDRtmR8xjmXSLVbKhhBwtYzgOz1sdkR_hTFdo/edit#gid=665153634

[12] Python-CAN documentation https://python-can.readthedocs.io/en/stable/message.html

[13] Cantools documentation https://cantools.readthedocs.io/en/latest/

[14] Similar Application to read data from a Tesla CANBUS https://medium.com/starschema-blog/
collecting-can-bus-data-with-ros2-and-qt-11cd4e4e0918

[15] DBC format specification https://github.com/stefanhoelzl/CANpy/blob/master/docs/DBC_
Specification.md

[16] DBC format https://www.influxtechnology.com/post/understanding-can-dbc

[17] MCP251X kernel module https://github.com/torvalds/linux/blob/master/drivers/net/
can/spi/mcp251x.c

[18] Khadas VIM4 https://docs.khadas.com/products/sbc/vim4/start

[19] Linux Kernel Device Tree Overlays https://docs.kernel.org/devicetree/overlay-notes.html

[20] CANBUS using MCP2515 on Khadas VIM3 - forum page https://forum.khadas.com/t/
setting-up-can-bus-mcp2515-at-linux-6-2/19950

[21] Khadas forum page opened to seek for help https://forum.khadas.com/t/
can-bus-mcp2515-on-vim4/20817/13

[22] Wikipedia - Docker https://en.wikipedia.org/wiki/Docker_(software)

Note: All the links included in the Reference have been accessed on January 3, 2024.

EPFL 25 2023-2024

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Concepts
https://docs.ros.org/en/humble/How-To-Guides/Topics-Services-Actions.html
https://docs.ros.org/en/humble/How-To-Guides/Topics-Services-Actions.html
https://docs.ros.org/en/humble/How-To-Guides/Developing-a-ROS-2-Package.html
https://docs.ros.org/en/humble/How-To-Guides/Developing-a-ROS-2-Package.html
https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://github.com/Black-Forest-Formula-Team/bfft_can_bus_msgs_to_ros_topic
https://github.com/Black-Forest-Formula-Team/bfft_can_bus_msgs_to_ros_topic
https://en.wikipedia.org/wiki/CAN_bus
https://docs.google.com/spreadsheets/d/1QLoGUTFDRtmR8xjmXSLVbKhhBwtYzgOz1sdkR_hTFdo/edit#gid=665153634
https://docs.google.com/spreadsheets/d/1QLoGUTFDRtmR8xjmXSLVbKhhBwtYzgOz1sdkR_hTFdo/edit#gid=665153634
https://python-can.readthedocs.io/en/stable/message.html
https://cantools.readthedocs.io/en/latest/
https://medium.com/starschema-blog/collecting-can-bus-data-with-ros2-and-qt-11cd4e4e0918
https://medium.com/starschema-blog/collecting-can-bus-data-with-ros2-and-qt-11cd4e4e0918
https://github.com/stefanhoelzl/CANpy/blob/master/docs/DBC_Specification.md
https://github.com/stefanhoelzl/CANpy/blob/master/docs/DBC_Specification.md
https://www.influxtechnology.com/post/understanding-can-dbc
https://github.com/torvalds/linux/blob/master/drivers/net/can/spi/mcp251x.c
https://github.com/torvalds/linux/blob/master/drivers/net/can/spi/mcp251x.c
https://docs.khadas.com/products/sbc/vim4/start
https://docs.kernel.org/devicetree/overlay-notes.html
https://forum.khadas.com/t/setting-up-can-bus-mcp2515-at-linux-6-2/19950
https://forum.khadas.com/t/setting-up-can-bus-mcp2515-at-linux-6-2/19950
https://forum.khadas.com/t/can-bus-mcp2515-on-vim4/20817/13
https://forum.khadas.com/t/can-bus-mcp2515-on-vim4/20817/13
https://en.wikipedia.org/wiki/Docker_(software)

	Abstract
	Solutions and importants outcomes
	Workflow
	Key schematic

	Introduction
	Global Context
	Project's Context

	System Description
	Hardware Architecture
	Software Technical Requirements

	Framework Architecture Proposal
	ROS
	Choice of ROS version

	ROS system design
	ROS components
	ROS interfaces
	ROS graph
	Development of CAN_to_ROS node
	First version - Proof of Concept
	First version limitations
	DBC CAN database files

	Development Environment
	Docker Image
	GIT repositories
	Node templates

	Issue with selected Onboard Computer
	MCP2515 Configuration
	OBC considerations

	Tests
	Next steps
	CAN_to_ROS
	Useful ROS tools
	Onboard Computer choice and Electronics
	Network Architecture

	Appendix
	Abbreviations
	Python Node Template
	C++ Node Template
	NodeJS Node Template

	References

